TABLE OF CONTENTS

01.	Preface	6
02.	Basics of electricity	10
03.	Basic design criteria	14
04.	One-line diagram	26
05.	Load balance	32
06.	Mains voltage selection	40
07.	Short circuit calculation	46
08.	Circuit breakers, contactors and selectivity	52
09.	Type approved equipment	58
10.	Hazardous areas & IP ratings	66
11.	AC sources	72
12.	High voltage	82
13.	Batteries	104
14.	Hybrid systems	114
15 .	Emergency power	130
16.	Switchboards	134
17 .	Parallel operation	140
18.	Motors and starting devices	148
19.	Transformers and converters	156
20.	Electromagnetic compatibility (EMC)	164
21.	Electrical cabling	174
22.	Automatic control systems	186
23.	Alarm and monitoring systems	204
24.	Nautical equipment	210
25.	Communication systems	220
26.	Safety systems	224
27.	Lighting systems	228
28.	Dynamic positioning	232
29.	Special systems	240
30.	Testing, Commissioning and classification	246
31.	Maintenance	258
32.	Appendices	262
33.	Useful internet links	268
34.	Index	270
35.	Credits	272

Introduction

Electrical installations in ships cover every aspect of an independent installation, from power generation, switchgear and distribution, to every type of consumer on board. They include all types of automation and remote control, as well as internal and external communication, navigation and nautical equipment. The basic difference with shore-based electrical installations is that ships have to be self-supporting. Ships have to have either the skilled personnel and necessary spares on board, or the required redundancy to be able to reach the next port in case of a failure of a single system or component.

Some applications of ships and offshore systems require this redundancy, not only in case of an electrical or mechanical failure, but also in case of other events such as fire or flooding of a space.

It is also essential to know the way in which an installation is operated in order to appraise situations like:

- manned or unmanned engine room,
- computerised control systems,
- one man on the bridge (Class notation).

All these considerations influence the basic design, including the location of equipment and cable routing.

Application of high-tech control and communication equipment and high-powered semiconductor drives requires knowledge of electromagnetic compatibility (EMC) and the application of EMC measures.

This book is intended for those readers who have a basic knowledge of electrical installations and who would like to widen their knowledge of the principles of electricity as well as the specific requirements of electrical installations in ships. Every paragraph will be accompanied by a short foreword or summary for ease of use.

The total of these summaries has been published as chapter 13 in the book SHIP KNOWLEDGE, a widely used encyclopaedia for people involved in the shipping world or shipbuilding industry.

About the authors:

René Borstlap:

Electrical marine engineer / designer, project leader of electrical installations / manager of a shipyard electrical department / classification electrical surveyor.

Hans ten Katen:

of the 2nd edition.

Naval architect / superintendent / repair manager at a shipyard / classification hull and machinery surveyor. We would also like to thank **Eddy de Dobbelaar** (Electrical Project Engineer) for his cooperation in the realization

In the completion period of the first edition of this book, the originator René Borstlap sadly passed away.

He will be remembered for his effort and knowledge in creating this book.

Photographs and drawings reproduced with kind permission of:

ABB 102

ABS 107, 108, 115 Allseas engineering 103, 245

Alphatron Marine BV, 213, 215, 216, 219

Amsport 32

van Andel Accu's 106, 111, 113 Bakker Sliedrecht 108 - 115

Jan van Boerum, 19-22, 25, 33, 51, 55, 57, 76, 77, 89, 145, 153, 156, 159, 183, 185, 187, 212, 219, 223,

231, 240, 242-244, 215

Danny Cornelissen, 210, 214, 215 Damen Shipyards 8-9, 10, 40, 117, 255

Eddy. de Dobbelaar 185

Gebhard-Electro by Several diagrams

Klaas van Dokkum, 6, 42, 66, 83, 214, 217, 220, 224, 225

GustoMSC, 242, 267 Hans ten Katen, 27, 31, 81, 109,

Neptune Shipyards 110 OceAnco 114,

Piet Sinke 26, 42, 43, 233, 254 TESO 104, 122, 123-129, Schneider Electric 53, 54, 96, 100

Klaas Slot, 7, 8, 9, 14, 16, 29, 39 205, 235, 241, 194, 241, 255 t/m 257